Mesh adaptivity in optimal control of elliptic variational inequalities with point-tracking of the state
نویسندگان
چکیده
An adaptive finite element method is developed for a class of optimal control problems with elliptic variational inequality constraints and objective functionals defined on the space of continuous functions, necessitated by a point-tracking requirement with respect to the state variable. A suitable first order stationarity concept is derived for the problem class via a penalty technique. The dual-weighted residual approach for goal-oriented adaptive finite elements is applied and relies on the stationarity system. It yields primal residuals weighted by approximate dual quantities and vice versa as well as complementarity mismatch errors. A report on numerical tests, including the critical case of biactivity, completes this work. 2010 Mathematics Subject Classification: [2010]49K20, 65K15, 90C33
منابع مشابه
Optimal Control of Problems Governed by Abstract Elliptic Variational Inequalities with State Constraints∗
In this paper we investigate optimal control problems governed by elliptic variational inequalities with additional state constraints. We present a relaxed formulation for the problem. With penalization methods and approximation techniques we give qualification conditions to get first-order optimality conditions.
متن کاملConvergence of distributed optimal control problems governed by elliptic variational inequalities
First, let ug be the unique solution of an elliptic variational inequality with source term g. We establish, in the general case, the error estimate between u3(μ) = μug1 + (1 − μ)ug2 and u4(μ) = uμg1+(1−μ)g2 for μ ∈ [0, 1]. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy g for each positive heat transf...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملSequential Optimality Conditions and Variational Inequalities
In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...
متن کاملψ-pseudomonotone generalized strong vector variational inequalities with application
In this paper, we establish an existence result of the solution for an generalized strong vector variational inequality already considered in the literature and as applications we obtain a new coincidence point theorem in Hilbert spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014